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Abstract. The operator-equivalent method was introduced by Stevens in 1952. This 
method enabled him to determine the quantum mechanical equivalent of a given 
spherical harmonic Ck,-the so-called Racah tensor operator an explicit 
function of the total angular momentum operator j within a constant 3 manifold. 
The method itself uses spherical harmonics in Cartesian coordinates and from each 
spherical harmonic the corrmponding Racah tensor operator is calculated. This paper 
shows that it is useful to fix T := k - 191 as all spherical harmonics possess 
the same polynomial structure with coefficients showing: simple dependence on the 
absolute value of g. For the following Racah operatom C ~ ~ l + , , l ~ l ,  which hold for all 
( q l ,  Stevens' operator-equivalent method has to be generalized. By an application of 
the Wigner-Erkart thewem to the operator-equivalents c1~l+,,1,1( J), the 3j-symbolo 
with two identical j s  disclose its innermost functional dependence on the variables. 
To give an example the calculations are explicitly stated for T = 0 , 1 , 2 , .  . . , 5 .  

1. Introduction 

Between 1942 and 1949 Racah published four papers [2-51 under the general title 
'Theory of Complex Spectra'. Before the publication of these papers certain rules were 
used-formulated by Slater [6] in 1929-to determine the energy levels of electrons 

these rules, while a further application of Lie's theory of continuous groups led him 
to a classification of configurations of equivalent f electrons. According to Racah a 
tensor operator Cbq and a spherical harmonic Cbq transform identically under any 
rotation of the total angular momentum operator .?. As the transformation properties 
are completely determined by the commutator relations with j ,  a tensor operator 

;n rnm-ls~ 3tn-o XAi;th +ha ;ntrnrl,int:nn of tnncnr n n n r n t n r c  F?=*.h *a.,111 -.n~m ... ~"...~.~" LI""...". .. .".. ".." ..."L"YY"Y.".. I -..I-. YY'.Y""L" ~""." ~ L " . I  

- -L:-c- - .  aa4,lallt.a. 

Stevens' operator-equivalent method is based on the coincidence of the commutator 
relations o i  tensor operators and spiiericai harmonics: i i  .i is fixed to a certain vaiue 
J ,  the step of quantization from a spherical harmonic to a tensor operator is given by 
a change of representation of the spherical harmonics: 

0305-4470/91/010035+ 10903.50 0 1991 IOP Publishing Ltd 35 



36 P Hoffmann 

Attention has to be paid to the fact that the components of the angular momentum 
operator j do not commute. Thus, the spherical harmonics first have to be trans- 
formed in a system of Cartesian coordinates-the commutator 'relations among the 
components of j are only known in such systems-while after substituting by j ,  
each term in a sum h a s  to be made symmetric in Js, J, and j,. Of course, the calcu- 
lation of these symmetrizations are in general very tedious. Fortunately-= we will 
see later-all symmetrizations can be simplified and then determined by a computer 
program. 

One degree of freedom is left by (1): O C k 9  is, like Ckq,  a tensor operator of rank k 
as long as the constant 8 is independent of q .  For the so-called operator-equivalent 
C k 9 ( J )  and the Racah operator Cks it is generally used: 

- -  

Ck, = 8,Ck,(.7). (3) 

In the theory of crystal fields the operator-equivalent factors O,,  e,, 8, are well known 
as the Stevens' factors aJ, io,, and yJ. An application of the Wigner-Eckart theorem 
to (3) for a system of n equivalent electrons, each with orbital momenhm 1 and 
forming eigenstates "+'L,, leads to the expression [7, 81: 

( 2 5  - k)! ( -1)StLtJ t l  
Ok(1",2S+'LJ) = (21+ 1)(25 + 1 ) Z k  J ( 2 J  + k + !)! 

Th- -d..n.4 --+-:- -$&ha ..":I 1.. "--. ,....,-_.&..- fi --" t-h..l.tnrl f,.- -11 ..n 
l l l r  L F Y Y C C "  L I L a I u l l n  L l r l l l r l l l D  "1 U l l C  Yll l l i  L.TIID"L "ycL"'"L ukp n,r III""III.UC" I". rill 1' 

d" and f" configurations by Nielson and Koster [9], while the 3j- and 6j-symbols can 
be found in Rotenberg [lo]. Due to certain selection rules of the 3j- and Gj-symbols 
the constant 0, is only non-vanishing for few values of k :  

, 

0 ,2 ,4 , .  . . , min{2J, 21) if 2 5  is even 
if 2 J  is odd. k = (  , 0 , 2 , 4 , ,  , . , ~ i n { 2 J  - !,2!! ( 5 )  

with k = 0, ! , 2 , .  . . and iqi 5 k. The transformation properties of spherical harmonics 
with negative values of q can be found by complex conjugation and multiplicat.ion by 
( - l ) Iq l  of (6). If we use the definition of the Legendre functions P,'(x): 
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we find by straightforward calculation an equation which expresses the spherical har- 
monics in Cartesian coordinates: 

rkck,lql(83 4) = P k , l q l ( ' +  iy)lqlGk,lql(r~ ') (8) 

where r2 = z2 + y2 + z2.  The constant flk,lql and the polynomial function G,,IqI(r, z )  
are defined by: 

k !  (-1)Iql. 

( k  - Iql)!(L + Id)! @k,hI := 3 J 

11-191 

j = 0  
Gk,IqI(r,z) := (\:[I 5) (" ;.'"')(z + r)j(z - r )k- lq l -J .  (10) 

In table 1 the Gk,lq1(r, z )  are listed for k = 0 ,1 , .  . . , 5 .  This table provides the idea t.o 
order the polynomials Gk,lql by r := E - IqI as those functions seem to have the same 
polynomial structure in z and r. To see this from (lo),  we define n := 1q1 and the 
coefficients in Gk,lql by: 

2n  + r 
anrj := ( n + j )  (') 

Table 1. The polynomial functions Gx,l , l (r .z)  for k = 0, l . .  .. , 5  
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For all coefficients anrj the equation: unr,7-j = anrj holds, and (lo) is rewritten more 
skilfully to: 

On the other hand we have for the term enclosed by the rectangular brackets: 

with the integers bj,": 

b,,, := 
O j p = v + j - r j u  "-P 

The left-hand side of (13) is invariant under a substitution r - j for j .  Thus, for the 
- "jtr" ,,","I. r,,,a,,y, I ,  W C  ,.=paLC ( l U ,  0.11" \"J 111 \"I, "j7" u11c Cquorr",'. "r-j,r" 

G",,," looks like: 
- L 1-^1-1^ v:--,,.. :c...- _^..I^^^ I ,?\  ,,"\ :.. /,9\ L IL^ ^^..-A:-... I 

with the integer coefficients gnrv: 

Three properties of the functions Gn+r,n(rZ, z )  shouid be poinied out here. First, the 
G,,,,, are even functions of r. This ensures that the operator-equivalents C,,+,,"(J) 
are only functions of f ,  3, and 3,. Second, as r2 is equal to ( z2  + y2 + z 2 ) ,  the 
polynomial functions G,+,,, are of degree r in the three components of r.  Third, 
the functions Gn+,," with fixed r and n can he divided by a rational number which 
is in general different from one. To &!.ermine the so-ralled grea.test. common divi- 
sor gcd,+,,,, we point out  that gnr0, the coefficient of z r  in G,+,,,, can be easily 
calculated: 

If we introduce polynomial functions H,+,,, by Gn+r,n/gcd,t,,, and the constants 
h r , n  by P"tr,ngcd"tr," and denote the coefficients of Hn+r,n by h,,,, we can define 
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where h,,, is the coefficient of z' in Hntr,". An application ofequations ( l l ) ,  (14), 
(15), (16) and (18) yields for the first six functions Hntr,": 

Hnt0,n = 1 

Hnt,,n = 
H"+" = (2n + 3 y  - r2  

Hnt3," = (2n + 5)z3 - 3zrZ 

Hnt4,n - - (291 + 5)(2n + 7)z4 - 6(2n + 5)z2r2 + 3r4 

Hn+S,n = (2n + 7)(2n + 9)z5 - 10(2n + 7)z3r2 + 15zr4. 

FAr later reference we define polynomial functions P,,+,,,(z, y, z )  including the whole 
r-dependence: 

2 P"+,,"(.> Y, 2) := (2 + iy)"H,t,,,(r ! 2) 

using the already mentioned functions Hnt,,,(r2, z ) :  

" even 

Equation (8) can be  rewritten to: 

with the constants en+,,": 

3. Calculation of the operator-eqiiivalents entr,,,(J) with T fixccl h i t  n 
arbitrary 

To determine the operator-equivalents Cnt7,"(J), we first replace in H,,,,, the vth 
power of r by (z2  + y2 + z2) ' I2  namely for all even numbers v between 0 and r .  Each 
term of P,+,," is therefore of the form 

(z + iy)"rFy'-Pz'-' (24) 

with t even, also lying between 0 and r,  and with p even, lying between 0 and t .  A first 
formula for the operator-equivalents can be given, if we apply the operator-~qiii~alcnt.  
method defined by  (2) to (22): 

C n t T , n ( J )  = en+,,nPntr,n(J). (25) 
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According to (24) and (22) each term of Pntr,,(J) transforms to: 

~ -,, +, L L j .  { (3, + i j y ) n x - (  J ,  } (26) 

The curly brackets denote that the enclosed term has to be made symmetric witb 
regard to any permutation of operators shown by the right superscript. The operator- 
equivalent method therefore specifies n + l  symmetrizations for each term of P,+, , , (J) .  
Fortunately, we may simplify these to only one per term by introducing additionally 
the raising operator jt: 

j+  , j =  ,L3. 
{ q j n + y z p : - t }  (27) 

Using the method of recursive symmetrization, which will be presented later in the 
text, this simplification is straightforward to prove. Further, if we denote shortly j+ ,  

j,, j,, j ,  and j ( j  + 1) for j + ,  js, j,, j ,  and 4, the first six operator-equivalents 

P"t,,"(J) are: 

Pn+Ll,,(J) = j ;  

P"t,,"(J) = (j;j*l 
Pn+*,"(J) = 2(n+ 1) { j ? 2 } -  {j;jzl- { j 3 3  

P"t3,n(J) = 2(n + 1) {.i?j?} - 3 { q j 2  21 - 3 {j;L $1 
Pnt4,"(J) = 4(n + 

- 12(n + 2) { j : j : j : }  - 12(n + 2) { j ; j :  $1 (28) 
+ 2) { j y j ; }  

+ 3 { j ; j ; }  + 3 ( j y j l }  + 6 ( j ; j :  ji} , 
P"+,,"(J) = 4(" +J)(n + 2) ( j ; j : }  

- 20(n + 2) ( j y j ; j : }  - 20(n + 2) { j ; j 3 ; ]  
n , .2 .2 + 15 {j;j&'} + 15 {.i;j2$} + 30 { j tw ,3 ,  ] 

with the convention that the symmetrization has  to be symmetric concerning any 
permutations of jt, j,, j ,  and j,. Difficulties seem to arise in  constructing all the 
permutations which the symmetrizations of (28) specify, as all of those have to be 
calculated independently of n. Thus, if  we concentrate on constructing these per- 
mutations, it is useful to introduce curved brackets of symmetrizations which only 
permute the operators. They can be distinguished from the usual ones, using t,he 
number of operators they enclose as a subscript. Defining: 

n .o .b . C  
{ j + j Z j Y 3 a  }n+o+b+e 

.n-1 .b .C  
:= jt { J +  ~ r ~ y ~ z } , t , t b t , - l  + j ,  { j ; j ~ - ' j ~ j ~ } " t ~ t ~ t ~ - l  

+ iY {i;j~j,"-'j:}n+,tb+,-, + j 2  b + W Y J Z  ),+,+atc-l (29) .n .a .b .c-1 

where n, a ,  b and c are natural numbers greater than zero, all permutations are 
constructed recursively. The recursion stops if there are no more enclosed operators, 



Generahalion of Stetlens' operator-equivalent method 41 

i.e. the index is zero. These brackets a re  defined logically as one. T h e  proof that 
the left-hand side of (29) is really symmetric with regard to any permutation of the 
operators jt, jc, jy and j ,  is based on the commutativity of the four terms of the 
sum on the right-hand side. By means of (29) we are able to justify the  simplification 
made in (27) and  to prove the, for our purpose, very useful formula: 

n 

The normal kind of symmetrizations we then find from: 

A successive application of (30) reduces the calculation of symmetrizations to calcu- 
lations of sums like E:=, im,  if we always commute j ,  to the  left-hand side in each 
expression. To achieve this, we use the commutativity relations: 

A convention has to he made with regard to the notation of the operator-equivalents 
Pnt,,,(J). A further application of the operator-equivalent method to (20) and (21) 
yields: 

(33) 

with 

- 
and the coefficients h,,, in H,t,,n, now are, compared with the coefficients h,,,, in 
H,,,,,, additionally a function o f j ( j +  1). 

The  recursion formalism can be easily installed on a computer: by the computer 
program REDUCE [12], a programmable system for formula manipulat.ions, all sym- 
metrizations of (28) were calculated independently of n by taking n as a variable. For 
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the first six operators Hn+7,n we get: 

fi"t0," = 1 

= jz 

fin++, = (2n t 5)(2n + 7) j i  - 6(2n + 5)j(j  + 1)jz 

- (n - ])(%I + 5)(3n2 t 12n t 5) j z  

- 3 j ( j  + 1)(-n3 - 2n2 + 2n + 2) +.3j2(j + t)2 

+ !(5n5 + 27n4 + 23n3 - 39n2 - 10n + 12) 
4 

= (2n + 7)(2n + 9)j: - 10(2n t 7)j(j  + 1)j: 

- (2n + 7)(5n3 + 20n2 - 15n - 15)js 

- 5 j ( j  + 1)(-3n3 - 9n2 + 8n + lO)j, t 15jz(j + 1)2j, 

+ $5n6 + 185n5 + 255n4 - 365n3 - 176n2 t 172n + 48) j ,  

(35) 

If we now compare the operators fin+r,n of (35) with the polynomial functions H,,,,, 
of (19), we find that the coefficient hnrO ofzr  equals the coefficient inrO ofj:. This, for 
the constant useful relation seems to hold for all r ,  hut is not proved explicitly. 

To indicate the computer memory required for the calculations given above, the 
author uses a default configuration of four megabyte on an IBM 3081 computer. This 
w a s  determined by the computer program REDUCE as the smallest possible configu- 
ration. By including interactively the self-written program Qsymbol into the program 
REDUCE, all six calculations were finished in six hours (nearly four hours were needed 
for H,,,,,,). The author assumes that a more ingenious structure for the program 
Qsymbol should drastically decrease the required computer time. 

4. Applications 

4.1. Compar i son  with other authors 

We dare say that the operator-equivalents C k q ( J )  have their main applicability i n  the 
crystal field theory and here in particular for configurations of equivalent f electrons. 
As we can see by the selection rule given in (5), a set of 3 t 5 t 7 = 15 operator- 
equivalents is in general needed to describe the crystal field splitting of an arbitrary 
4f configuration. Therefore, these equivalents (and some more) have been calculated 
by several authors [I ,  13-15], but only, and that is the difference to the operator- 
equivalents calculated in this paper, for fixed k and q. Thus, if we p>t special values 
of r and n in the operators Hjntr," of (35), the operator-equivalents C,,,, ,(J) should 
correspond to those calculated by other authors. Unfortunately, different authors use 
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different notations and they often s ta r t  their calculations using different polynomial 
functions or operators. To compare different operator-equivalents, we have to look 
carefully a t  their defining equations. 

While by definition the so-called Stevens' operators Ok,(J) [l ,  131, which are 
usually written as O,,, cannot be divided by any integer different from 1, the operator- 
equivalents P,+,,,(J) can contain them for special values of n. If we define these 
integers by w,+,,,, the following equation: 

connects both equivalents. In table 2 the w,+,,, are listed for r = O , l ,  . . . ,  5 and 
were determined by an  investigation of If,,,,,,. A simpler relationship exists between 

the operator-equivalents P,+,,,(J) and the equivalents Ont,,"(.T), which were first 
introduced by  Buckmast.er [14] and afterwards completed by Smith and Thornley [15]. 
By definition we have: On+,,"(.7) = Cn+7,n(J) and therefore: 

- 

- 
O"t,,"(J) = ~"+r ,nP"+r ."(J) .  (37) 

Table 2. The constants ~ ~ t ~ , ~  by which theoperator-eq,iivalents P,,+,,,(J) have lo 
be divided toget theusualStevens'opertors 6,+,,,(J). If n is in theset o f M ,  &,M 
isequaltoone,otherwiseit iszero. Theret aN+bisdefined by {b,atb,Za+b,  ... ). 

wnt0.n = 1 

W " t 1 , "  = 1 

wnt2.n = 1 

~ " t 3 , ~  = 1 t 2 6 , , , ~ + ~  

W " t 4 , "  = 1 t 26",,N+1 + 2 6 , , 3 N + 1  

W"t5." = [ I +  26",3Ntll [I + 46,,sN+3 + 46",5Nt,I 

4.2. Formulae for 3j-symbols as fiinctaons of their variables 

The  application of the  Wigner-Eckart theorem to the matrix element 

with n + r 5 Zj, defines a 3j-symbol by: 

The  reduced matrix element is given by Smith and Thornley [15]: 
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while the matrix element itself can be calculated by using equations ( 2 5 ) ,  (33), (34) 
and the expression: 

Collecting everything, we finally get: 

(;, -j, n : T )  

- (-1)Y-m y + r  - 6 m , p - n  %+r.n 

x $ [ Hn+r,n(jl m) + H,+& m - .)I . (41) 
As an example, we calculate from (35) for T = 2 and n 5 2 j  - 2: 

m' -m n 

m2 + (m - ra)2 n(n + 1)' - n2(2n + 3)] 
2 - j ( j + l ) +  
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